The bridge number of surface links and kei colorings
نویسندگان
چکیده
Meier and Zupan introduced bridge trisections of surface links in S 4 $S^4$ as a 4-dimensional analogue to decompositions classical links, which gives numerical invariant called the number. We prove that there exist infinitely many knots with number n $n$ for any integer ⩾ $n \geqslant 4$ . To it, we use colorings by keis give lower bounds links.
منابع مشابه
Boundary Slopes of 2-Bridge Links Determine the Crossing Number
A diagonal surface in a link exterior M is a properly embedded, incompressible, boundary incompressible surface which furthermore has the same number of boundary components and same slope on each component of ∂M . We derive a formula for the boundary slope of a diagonal surface in the exterior of a 2-bridge link which is analogous to the formula for the boundary slope of a 2-bridge knot found b...
متن کاملthe study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media
امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...
Maximal Thurston-bennequin Number of Two-bridge Links
We compute the maximal Thurston-Bennequin number for a Legendrian two-bridge knot or oriented two-bridge link in standard contact R, by showing that the upper bound given by the Kauffman polynomial is sharp. As an application, we present a table of maximal Thurston-Bennequin numbers for prime knots with nine or fewer crossings.
متن کاملGENERALIZED n-COLORINGS OF LINKS
The notion of an (n, r)-coloring for a link diagram generalizes the idea of an n-coloring introduced by R.H. Fox. For any positive integer n the various (n, r)-colorings of a diagram for an oriented link l correspond in a natural way to the periodic points of the representation shift ΦZ/n(l) of the link. The number of (n, r)-colorings of a diagram for a satellite knot is determined by the color...
متن کاملTurán Graphs and the Number of Colorings
We consider an old problem of Linial and Wilf to determine the structure of graphs which allow the maximum number of q-colorings among graphs with n vertices and m edges. We show that if r divides q then for all sufficiently large n the Turán graph Tr(n) has more q-colorings than any other graph with the same number of vertices and edges. This partially confirms a conjecture of Lazebnik. Our pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of The London Mathematical Society
سال: 2022
ISSN: ['1469-2120', '0024-6093']
DOI: https://doi.org/10.1112/blms.12654